Innovative Approaches to Enable Rapid Production of Horticultural Crops Eliminating the Rootstock Bottleneck

72nd North Jersey Fruit Meeting

Amit Dhingra, Ph.D.

Associate Professor, Department of Horticulture, Washington State University Founder and CSO, Phytelligence Inc.

Introductions

Research Motivation – Lab to Field

Innovations for Sustainable Food Production

Pre-harvest

Pre-Production

http://www.forfruittrees.com/GOFrtTree.jpg.

http://fidw.eweb4.com/out/974608.html

Post-harvest

Rootstock Bottleneck

- New Genetics becoming available at a much faster rate
- Land in the current nursery process is tied up with prior inventory
- Shifting business model Consumer is asking for new varieties such as HC, Gala and Fuji
- Improving density and efficiency per acre new architectures
- One size fits all approach in TC no longer feasible for diverse genetic material
- Market is unpredictable, ability to respond rapidly is the need of the hour

How it has always been done

Rootstock or Plant Material Multiplication (Years 1-4)

Mounding - slower and fewer plants produced initially - stronger, larger plants

Rootstock or Plant Material Multiplication (Years 1-4)

Layering Faster production of more plants - Weaker, smaller caliper plants, more sort outs

Stephen Hoying, Cornell Extension

2nd Year Stool Bed with 1st hilling

Stephen Hoying, Cornell Extension

Mature Stool Bed Ready for Harvest

Rootstock Harvest

Wait until trees defoliate naturally or defoliate chemically (2.25kg ZnSO₄ per 378 l H_2O) and/or manually if layer it is to be stored.

- Cut plants below new
- roots being careful not to
- damage mother plant.

Stool bed Multiplication Rate

- Year of Planting 0 plants
- 2nd leaf 15 plants
- 3rd leaf
- 4th leaf

100 plants

50 plants

100-fold multiplication in 4 years/meter

• More plant variability in younger stoolbeds

-

• Greater number of "sort outs" plants on younger beds

Cost per unit low – long time for ROI + cost of lost opportunity No longer realistic

Stephen Hoying, Cornell Extension

Starting Point – Geneva 41

Media and plants received from a commercial TC lab

Smarter Plants

Phytelligence Founding Team

Nathan Tarlyn, Lab manager; Kathie Nicholson, Ph.D. Candidate Tyson Koepke, Ph.D. 2012; Derick Jiwan, Ph.D. 2012 Scott Schaeffer, Ph.D. 2013

Efficient and Reduced Risk Process

Phytelligence Growing Cycle Versus Traditional Processes

Delivery May 28, 2015 – Planting May 29, 2015 ~18 inch, actively growing, well rooted plants

September 4, 2015 Uniform caliper achieved in late August – budded rootstocks

Multiplication Comparison

Risk – Mixed up Identity

WSU – Genomes Sequenced

~79 x draft Double Haploid Apple Support/ Collaboration WSU, IASMA, USDA-NIFA, WTFRC

84X draft

Support/collaboration WSU, WTFRC, Universidad Andreas Bello, Chile University of Chile, Chile Roche, Floragenex

~65X draft Support/collaboration Pear Bureau NW, WSU, IASMA, Italy University of Chile, Chile; Universidad Andreas Bello, Chile; INRA, France

55X draft Support/collaboration CSIC Spain, WSU, Southern Cross University, Australia

> With IRTA – Spain – 40 varieties

DNA technology can eliminate losses

Mixup delays rootstock production

Nurseries propagating the new Geneva 214 rootstock found that it was actually the more vigorous G.222.

RICHARD LEHNERT

Guaranteed Identity

Helping you safeguard your investment With immutable evidence based on DNA information

Unique Genetic Identity Barcode

- Avoid a mix up before it happens.
 Genetic identity does not change...
 UPC labels do. Insurance against risk.
- Consistency Ensure each and every of the thousands of plants are genetically identical during propagation.
- Unique genetic identity can help in settling infringement issues if any arise. Think managed varieties.

Pear Rootstock Mix up addressed

Over a dozen genetic analysis projects completed

Innovations for Sustainable Food Production

Pre-harvest

Pre-Production

http://www.forfruittrees.com/GOFrtTree.jpg.

http://fidw.eweb4.com/out/974608.html

Post-harvest

It started on the orchard....

Compound improves firmness, color for d'Anjou pears

Firmness

Postharvest color

21 DAYS LATER

http://www.goodfruit.com/keeping-pears-firm/

TREATED

Transforments

with GS work

at 25.5 and 10 pounds

per alm

Field trials performed by Professor David Sugar OSU Medford

- Fruit quality/Firmness
 - Russet
 - Internal decay
 - Scab
 - Post-harvest decay

Comice pear: Harvest September 15, 2011

Treatment	Rate	Fruit firmness (lbf) 7 DBH	Fruit firmness (lbf) at harvest	Soluble solids (°Brix) at harvest
Untreated	-	14.0 a	12.1 a	13.8 a
30 DBH	10 lb/acre	12.4 a	11.7 a	13.7 a

Untreated - \sim 34.2% decrease in firmness starting from 7 DBH and during storage

GB treated - \sim 4% decrease in firmness starting from 7 DBG and during storage

30 DBH	10 lb/ac	11.9 b	15.2	0.0
30 + 7 DBH	10 lb/ac	12.0 b	16.1	0.0
	P value	0.056	0.116	

Internal Browning Eliminated

Comice pear: 6 months storage at -0.5 °C

Treatment	Rate	Fruit firmness (lbf)	Soluble solids (°Brix)	Internal browning (%)
Untreated	-	7.9	15.2	33.2
30 DBH	10 lb/ac	8.3	16.1	1.1
30 + 7 DBH	10 lb/ac	8.7	15.4	0.0
	P value	0.738	0.288	0.111

Field trials performed by Professor David Sugar OSU Medford

- Fruit quality/Firmness Comice remained firmer during storage
- Internal decay

Internal decay eliminated in Comice

• Scab

Scab reduced but not eliminated

Post-harvest decay

Significant decrease in post-harvest decay

Implications of Delayed Ripening

- Fruit can stay longer on trees
 - Longer picking season
 - Increased fruit weight
- Effects on storage
 - Longer storage/shelf lives
 - Increased market
- Firmer fruit for packing/transport

Less damage

Commercial Trials

- Commercial trials started with a local Ag Chemical company Fall 2015
- Encouraging results at harvest
- Post harvest fruit quality will be evaluated in March 2016
- Continued trials in 2016-2019

Innovations for Sustainable Food Production

Pre-harvest

Pre-Production

http://www.forfruittrees.com/GOFrtTree.jpg.

http://fidw.eweb4.com/out/974608.html

Post-harvest

Regulation of Ripening

1-MCP completely suspends ripening. It also blocks cold-induced ripening.

Predominant hypothesis – Ethylene receptors are occupied by 1-MCP and there is no turnover of receptor proteins

Is the non-responsiveness to 1-MCP due to the non-ethylene pathways?

Indicators of metabolic limitations in gene expression study.

Metabolic Override Approach to Reactivate Ripening

- Potential Ripening Compounds (RCs) were dissolved in water
- Pears were immersed for 24 hours
- They were placed in air flow chambers for measurement of ethylene and CO2

Results

Results - Ethylene

Evolution of ethylene measured in microliter per hour per kilogram fruit. Note the positive trend of ethylene release in fruit treated with 0.5 mM RC-1 as an indicator of progress towards ripening in 1-MCP treated fruit. (Dhingra and Hendrickson - US20140121110 A1)

Results - Firmness

Mean fruit firmness as calculated on day 0 and day 5. Note the drop in fruit firmness in fruit treated with 0.5 mM of RC-1. The firmness of 4 lbf and below represents eating quality in pear fruit. (Dhingra and Hendrickson -US20140121110 A1)

Consumer Survey

Preliminary taste panel analysis

	Ranking 2015 - Anjou			
	Overall acceptance	Appearance	Taste/ Flavor	Texture
M o s t acceptable	3% RC	1%	3% RC	3% RC
	2%	Control	2% RC	2% RC
	Control	2%	1%	1%
L e a s t acceptable	1% RC	3% RC	Control	Control

Knowledge – network of experts

Services – DNA testing , virus scr<u>eening and</u>

Product – True to Type Plant Material

 $\boldsymbol{\varphi}_{\text{Phytelligence}}$

One Stop Shop

Capacity

3 pillars of business success

Time - And you run and you run to catch up with the sun but it's sinking

Racing around to come up behind you again The sun is the same in a relative way, but you're older Shorter of breath and one day closer to death....

Phytelligence – Jersey Boys

Phytelligence Open House 4:30 pm – 6:00 pm

Thank you!

